Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2324404

ABSTRACT

Airborne exposure has been highlighted during the COVID-19 pandemic as a probable infection route. This experimental study investigates different protection methods at an office workstation, where the concentration characteristics are studied under the mixing ventilation conditions. The protection methods were the room air purifier, personal air purifier, face mask, and workstation partition panels. In experiments, the breathing machine, nebulizer, and syringe pump was used to generate an aerosol distribution of paraffin oil into the room. The breathing thermal manikin and the thermal dummy simulated the exposed and infected person, respectively. The concentration characteristics were measured from the manikin breathing zone. The temporal concentration characteristics were measured from zero concentration to steady-state conditions. The study provides insights into the effects of different protection methods for occupational health and safety decision-making for office indoor environments. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

2.
Building and Environment ; 231, 2023.
Article in English | Scopus | ID: covidwho-2246533

ABSTRACT

In sparsely occupied large industrial and commercial buildings, large-diameter ceiling fans1 (LDCFs) are commonly utilized for comfort cooling and destratification;however, a limited number of studies were conducted to guide the operation of these devices during the COVID-19 pandemic. This study conducted 223 parametrical computational-fluid-dynamics (CFD) simulations of LDCFs in the U.S. Department of Energy warehouse reference building to compare the impacts of fan operations, index-person, and worker-packing-line locations on airborne exposures to infectious aerosols under both summer and winter conditions. The steady-state airflow fields were modeled while transient exposures to particles of varying sizes (0.5–10 μm) were evaluated over an 8-h period. Both the airflow and aerosol models were validated by measurement data from the literature. It was found that it is preferable to create a breeze from LDCFs for increased airborne dilution into a sparsely occupied large warehouse, which is more similar to an outdoor scenario than a typical indoor scenario. Operation of fans at the highest feasible speed while maintaining thermal-comfort requirements consistently outperformed the other options in terms of airborne exposures. There is no substantial evidence that fan reversal is beneficial in the current large space of interest. Reversal flow direction to create upward flows at higher fan speeds generally reduced performance compared with downward flows, as there was less airflow through the fan blades at the same rotational speed. Reversing flow at lower fan speeds decreased airflow speeds and dilution in the space and, thus, increased whole-warehouse concentrations. © 2023 Elsevier Ltd

3.
AIAA AVIATION 2022 Forum ; 2022.
Article in English | Scopus | ID: covidwho-1974586

ABSTRACT

The aircraft boarding process is characterized by great movement and close contact between passengers in a confined space, which is a situation of particular concern considering the risk of exposure to airborne infectious diseases such as the COVID-19. In order to evaluate the airborne exposure risk during a commercial aircraft boarding process, an agent-based simulation model approach is adopted in the present work. Since the elderly population is one of the most at risk groups, special features are included in the simulation model in order to evaluate how this group is affected in the process. Three aspects are considered: priority boarding (elders boarding order);boarding strategy;and social distancing measures. The main findings are that care must be taken when interpreting average exposure risks, since although the overall risk of exposure is low, there may be cases in which significant risk is presented. © 2022, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.

4.
Emerg Microbes Infect ; 9(1): 2597-2605, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-933803

ABSTRACT

The worldwide repercussions of COVID-19 sparked important research efforts, yet the detailed contribution of aerosols in the transmission of SARS-CoV-2 has not been elucidated. In an attempt to quantify viral aerosols in the environment of infected patients, we collected 100 air samples in acute care hospital rooms hosting 22 patients over the course of nearly two months using three different air sampling protocols. Quantification by RT-qPCR (ORF1b) led to 11 positive samples from 6 patient rooms (Ct < 40). Viral cultures were negative. No correlation was observed between particular symptoms, length of hospital stay, clinical parameters, and time since symptom onset and the detection of airborne viral RNA. Low detection rates in the hospital rooms may be attributable to the appropriate application of mitigation methods according to the risk control hierarchy, such as increased ventilation to 4.85 air changes per hour to create negative pressure rooms. Our work estimates the mean emission rate of patients and potential airborne concentration in the absence of ventilation. Additional research is needed understand aerosolization events occur, contributing factors, and how best to prevent them.


Subject(s)
Air Microbiology , COVID-19/virology , Hospitals , SARS-CoV-2 , Ventilation , Adult , Aged , Aged, 80 and over , Animals , COVID-19/therapy , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL